• Polyak, K. et al. Heterogeneity in breast cancer. The Journal of clinical investigation 121, 3786–3788 (2011).

    CAS 
    Article 

    Google Scholar 

  • Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1805, 105–117 (2010).

    CAS 
    Article 

    Google Scholar 

  • Gavenonis, S. C. & Roth, S. O. Role of magnetic resonance imaging in evaluating the extent of disease. Magnetic Resonance Imaging Clinics 18, 199–206 (2010).

    Article 

    Google Scholar 

  • Weinstein, S. & Rosen, M. Breast mr imaging: current indications and advanced imaging techniques. Radiologic Clinics 48, 1013–1042 (2010).

    Article 

    Google Scholar 

  • Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2016).

    Article 

    Google Scholar 

  • McNitt-Gray, M. et al. Standardization in quantitative imaging: a multicenter comparison of radiomic features from different software packages on digital reference objects and patient data sets. Tomography 6, 118–128 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zwanenburg, A. et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 328–338 (2020).

    Article 

    Google Scholar 

  • Valdora, F., Houssami, N., Rossi, F., Calabrese, M. & Tagliafico, A. S. Rapid review: radiomics and breast cancer. Breast cancer research and treatment 169, 217–229 (2018).

    Article 

    Google Scholar 

  • Clark, K. et al. The cancer imaging archive (tcia): maintaining and operating a public information repository. Journal of digital imaging 26, 1045–1057 (2013).

    Article 

    Google Scholar 

  • Saha, A. et al. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 dce-mri features. British journal of cancer 119, 508–516 (2018).

    CAS 
    Article 

    Google Scholar 

  • Saha, A. et al. Dynamic contrast-enhanced magnetic resonance images of breast cancer patients with tumor locations. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.e3sv-re93 (2021).

  • Lehman, C. et al. Acrin trial 6667 investigators group. mri evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356, 1295–303 (2007).

    CAS 
    Article 

    Google Scholar 

  • Kinahan, P., Muzi, M., Bialecki, B., Herman, B. & Coombs, L. Acrin-contralateral-breast-mr (acrin 6667). The Cancer Imaging Archive. https://doi.org/10.7937/Q1EE-J082 (2021).

  • Castaldo, R., Pane, K., Nicolai, E., Salvatore, M. & Franzese, M. The impact of normalization approaches to automatically detect radiogenomic phenotypes characterizing breast cancer receptors status. Cancers 12, 518 (2020).

    CAS 
    Article 

    Google Scholar 

  • Pati, S. et al. Reproducibility analysis of multi-institutional paired expert annotations and radiomic features of the ivy glioblastoma atlas project (ivy gap) dataset. Medical Physics 47, 6039–6052 (2020).

    ADS 
    Article 

    Google Scholar 

  • Saint Martin, M.-J. et al. A radiomics pipeline dedicated to breast mri: validation on a multi-scanner phantom study. Magnetic Resonance Materials in Physics, Biology and Medicine 34, 355–366 (2021).

    Article 

    Google Scholar 

  • Newitt, D. et al. Multi-center breast dce-mri data and segmentations from patients in the i-spy 1/acrin 6657 trials. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.HdHpgJLK (2016).

  • Hylton, N. M. et al. Neoadjuvant chemotherapy for breast cancer: functional tumor volume by mr imaging predicts recurrence-free survival—results from the acrin 6657/calgb 150007 i-spy 1 trial. Radiology 279, 44–55 (2016).

    Article 

    Google Scholar 

  • Hylton, N. M. Vascularity assessment of breast lesions with gadolinium-enhanced mr imaging. Magnetic resonance imaging clinics of North America 7, 411–20 (1999).

    CAS 
    Article 

    Google Scholar 

  • Chitalia, R. et al. Radiomic tumor phenotypes can augment molecular profiling in predicting survival after breast neoadjuvant chemotherapy: Results from acrin 6657/i-spy 1. Under review (2021).

  • Chitalia, R. D. et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (dce-mri) scans predict 10-year recurrence. Clinical Cancer Research 26, 862–869 (2020).

    Article 

    Google Scholar 

  • Davatzikos, C. et al. Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome. Journal of medical imaging 5, 011018 (2018).

    Article 

    Google Scholar 

  • Pati, S. et al. The cancer imaging phenomics toolkit (captk): Technical overview. In International MICCAI Brainlesion Workshop, 380–394 (Springer, 2019).

  • Rathore, S. et al. Brain cancer imaging phenomics toolkit (brain-captk): an interactive platform for quantitative analysis of glioblastoma. In International MICCAI Brainlesion Workshop, 133–145 (Springer, 2017).

  • Cox, R. et al. A (sort of) new image data format standard: Nifti-1: We 150. Neuroimage 22 (2004).

  • Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE transactions on medical imaging 17, 87–97 (1998).

    CAS 
    Article 

    Google Scholar 

  • Tustison, N. J. et al. N4itk: improved n3 bias correction. IEEE transactions on medical imaging 29, 1310–1320 (2010).

    Article 

    Google Scholar 

  • Al Shalabi, L. & Shaaban, Z. Normalization as a preprocessing engine for data mining and the approach of preference matrix. In 2006 International conference on dependability of computer systems, 207–214 (IEEE, 2006).

  • Ribaric, S. & Fratric, I. Experimental evaluation of matching-score normalization techniques on different multimodal biometric systems. In MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference, 498–501 (IEEE, 2006).

  • Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXivpreprintarXiv:1811.02629 (2018)..

  • Abdi, H., et al. Normalizing data. Encyclopedia of research design 1 (2010).

  • Jafri, N. F. et al. Optimized breast mri functional tumor volume as a biomarker of recurrence-free survival following neoadjuvant chemotherapy. Journal of Magnetic Resonance Imaging 40, 476–482 (2014).

    Article 

    Google Scholar 

  • Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006).

    Article 

    Google Scholar 

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, 234–241 (Springer, 2015).

  • Thakur, S. et al. Brain extraction on mri scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training. NeuroImage 220, 117081 (2020).

    Article 

    Google Scholar 

  • Zijdenbos, A. P., Dawant, B. M., Margolin, R. A. & Palmer, A. C. Morphometric analysis of white matter lesions in mr images: method and validation. IEEE transactions on medical imaging 13, 716–724 (1994).

    CAS 
    Article 

    Google Scholar 

  • Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep learning in medical image analysis and multimodal learning for clinical decision support, 240–248 (Springer, 2017).

  • Pati, S. et al. Gandlf: A generally nuanced deep learning framework for scalable end-to-end clinical workflows in medical imaging. arXiv preprint arXiv:2103.01006 (2021).

  • Macyszyn, L. et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-oncology 18, 417–425 (2015).

    Article 

    Google Scholar 

  • Bakas, S. et al. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Scientific data 4, 170117 (2017).

    Article 

    Google Scholar 

  • Fathi Kazerooni, A. et al. Cancer imaging phenomics via captk: Multi-institutional prediction of progression-free survival and pattern of recurrence in glioblastoma. JCO Clinical Cancer Informatics 4, 234–244 (2020).

    Article 

    Google Scholar 

  • Bakas, S. et al. Integrative radiomic analysis for pre-surgical prognostic stratification of glioblastoma patients: from advanced to basic mri protocols. In Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 11315, 113151S (International Society for Optics and Photonics, 2020).

  • Thakur, S. P. et al. Skull-stripping of glioblastoma mri scans using 3d deep learning. In International MICCAI Brainlesion Workshop, 57–68 (Springer, 2019).

  • Chitalia, R. et al. Expert tumor annotations and radiomic features for the ispy1/acrin 6657 trial data collection. The Cancer Imaging Archive. https://doi.org/10.7937/TCIA.XC7A-QT20 (2022).

  • Wilkinson, M. D. et al. The fair guiding principles for scientific data management and stewardship. Scientific data 3, 1–9 (2016).

    Article 

    Google Scholar 

  • Topics #Advanced computer #computer #Electronics #Hardware #Software